1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
| #include <stdio.h> #include <stdint.h> #include <string.h> #include <iostream> #include <assert.h>
//字节序的小头和大头的问题 #define ZEN_LITTLE_ENDIAN 0x0123 #define ZEN_BIG_ENDIAN 0x3210
//目前所有的代码都是为了小头党服务的,不知道有生之年这套代码是否还会为大头党服务一次? #ifndef ZEN_BYTES_ORDER #define ZEN_BYTES_ORDER ZEN_LITTLE_ENDIAN #endif
#ifndef ZEN_SWAP_UINT16 #define ZEN_SWAP_UINT16(x) ((((x) & 0xff00) >> 8) | (((x) & 0x00ff) << 8)) #endif #ifndef ZEN_SWAP_UINT32 #define ZEN_SWAP_UINT32(x) ((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >> 8) | \ (((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24)) #endif #ifndef ZEN_SWAP_UINT64 #define ZEN_SWAP_UINT64(x) ((((x) & 0xff00000000000000) >> 56) | (((x) & 0x00ff000000000000) >> 40) | \ (((x) & 0x0000ff0000000000) >> 24) | (((x) & 0x000000ff00000000) >> 8) | \ (((x) & 0x00000000ff000000) << 8 ) | (((x) & 0x0000000000ff0000) << 24) | \ (((x) & 0x000000000000ff00) << 40 ) | (((x) & 0x00000000000000ff) << 56)) #endif
//将一个(字符串)数组,拷贝到另外一个uint32_t数组,同时每个uint32_t反字节序 void *swap_uint32_memcpy(void *to, const void *from, size_t length) { memcpy(to, from, length); size_t remain_len = (4 - (length & 3)) & 3;
//数据不是4字节的倍数,补充0 if (remain_len) { for (size_t i = 0; i < remain_len; ++i) { *((char *)(to) + length + i) = 0; } //调整成4的倍数 length += remain_len; }
//所有的数据反转 for (size_t i = 0; i < length / 4; ++i) { ((uint32_t *)to)[i] = ZEN_SWAP_UINT32(((uint32_t *)to)[i]); }
return to; }
///MD5的结果数据长度 static const size_t ZEN_MD5_HASH_SIZE = 16; ///SHA1的结果数据长度 static const size_t ZEN_SHA1_HASH_SIZE = 20;
namespace ZEN_LIB {
/*! @brief 求某个内存块的MD5, @return unsigned char* 返回的的结果, @param[in] buf 求MD5的内存BUFFER指针 @param[in] size BUFFER长度 @param[out] result 结果 */ unsigned char *md5(const unsigned char *buf, size_t size, unsigned char result[ZEN_MD5_HASH_SIZE]);
/*! @brief 求内存块BUFFER的SHA1值 @return unsigned char* 返回的的结果 @param[in] buf 求SHA1的内存BUFFER指针 @param[in] size BUFFER长度 @param[out] result 结果 */ unsigned char *sha1(const unsigned char *buf, size_t size, unsigned char result[ZEN_SHA1_HASH_SIZE]); };
//================================================================================================ //MD5的算法
//每次处理的BLOCK的大小 static const size_t ZEN_MD5_BLOCK_SIZE = 64;
//md5算法的上下文,保存一些状态,中间数据,结果 typedef struct md5_ctx { //处理的数据的长度 uint64_t length_; //还没有处理的数据长度 uint64_t unprocessed_; //取得的HASH结果(中间数据) uint32_t hash_[4]; } md5_ctx;
#define ROTL32(dword, n) ((dword) << (n) ^ ((dword) >> (32 - (n)))) #define ROTR32(dword, n) ((dword) >> (n) ^ ((dword) << (32 - (n)))) #define ROTL64(qword, n) ((qword) << (n) ^ ((qword) >> (64 - (n)))) #define ROTR64(qword, n) ((qword) >> (n) ^ ((qword) << (64 - (n))))
/*! @brief 内部函数,初始化MD5的context,内容 @param ctx */ static void zen_md5_init(md5_ctx *ctx) { ctx->length_ = 0; ctx->unprocessed_ = 0;
/* initialize state */ ctx->hash_[0] = 0x67452301; ctx->hash_[1] = 0xefcdab89; ctx->hash_[2] = 0x98badcfe; ctx->hash_[3] = 0x10325476; }
/* First, define four auxiliary functions that each take as input * three 32-bit words and returns a 32-bit word.*/
/* F(x,y,z) = ((y XOR z) AND x) XOR z - is faster then original version */ #define MD5_F(x, y, z) ((((y) ^ (z)) & (x)) ^ (z)) #define MD5_G(x, y, z) (((x) & (z)) | ((y) & (~z))) #define MD5_H(x, y, z) ((x) ^ (y) ^ (z)) #define MD5_I(x, y, z) ((y) ^ ((x) | (~z)))
/* transformations for rounds 1, 2, 3, and 4. */ #define MD5_ROUND1(a, b, c, d, x, s, ac) { \ (a) += MD5_F((b), (c), (d)) + (x) + (ac); \ (a) = ROTL32((a), (s)); \ (a) += (b); \ } #define MD5_ROUND2(a, b, c, d, x, s, ac) { \ (a) += MD5_G((b), (c), (d)) + (x) + (ac); \ (a) = ROTL32((a), (s)); \ (a) += (b); \ } #define MD5_ROUND3(a, b, c, d, x, s, ac) { \ (a) += MD5_H((b), (c), (d)) + (x) + (ac); \ (a) = ROTL32((a), (s)); \ (a) += (b); \ } #define MD5_ROUND4(a, b, c, d, x, s, ac) { \ (a) += MD5_I((b), (c), (d)) + (x) + (ac); \ (a) = ROTL32((a), (s)); \ (a) += (b); \ }
/*! @brief 内部函数,将64个字节,16个uint32_t的数组进行摘要(杂凑)处理,处理的数据自己序是小头数据 @param state 存放处理的hash数据结果 @param block 要处理的block,64个字节,16个uint32_t的数组 */ static void zen_md5_process_block(uint32_t state[4], const uint32_t block[ZEN_MD5_BLOCK_SIZE / 4]) { register unsigned a, b, c, d; a = state[0]; b = state[1]; c = state[2]; d = state[3];
const uint32_t *x = NULL;
//MD5里面计算的数据都是小头数据.大头党的数据要处理 #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN x = block; #else uint32_t swap_block[ZEN_MD5_BLOCK_SIZE / 4]; swap_uint32_memcpy(swap_block, block, 64); x = swap_block; #endif
MD5_ROUND1(a, b, c, d, x[ 0], 7, 0xd76aa478); MD5_ROUND1(d, a, b, c, x[ 1], 12, 0xe8c7b756); MD5_ROUND1(c, d, a, b, x[ 2], 17, 0x242070db); MD5_ROUND1(b, c, d, a, x[ 3], 22, 0xc1bdceee); MD5_ROUND1(a, b, c, d, x[ 4], 7, 0xf57c0faf); MD5_ROUND1(d, a, b, c, x[ 5], 12, 0x4787c62a); MD5_ROUND1(c, d, a, b, x[ 6], 17, 0xa8304613); MD5_ROUND1(b, c, d, a, x[ 7], 22, 0xfd469501); MD5_ROUND1(a, b, c, d, x[ 8], 7, 0x698098d8); MD5_ROUND1(d, a, b, c, x[ 9], 12, 0x8b44f7af); MD5_ROUND1(c, d, a, b, x[10], 17, 0xffff5bb1); MD5_ROUND1(b, c, d, a, x[11], 22, 0x895cd7be); MD5_ROUND1(a, b, c, d, x[12], 7, 0x6b901122); MD5_ROUND1(d, a, b, c, x[13], 12, 0xfd987193); MD5_ROUND1(c, d, a, b, x[14], 17, 0xa679438e); MD5_ROUND1(b, c, d, a, x[15], 22, 0x49b40821);
MD5_ROUND2(a, b, c, d, x[ 1], 5, 0xf61e2562); MD5_ROUND2(d, a, b, c, x[ 6], 9, 0xc040b340); MD5_ROUND2(c, d, a, b, x[11], 14, 0x265e5a51); MD5_ROUND2(b, c, d, a, x[ 0], 20, 0xe9b6c7aa); MD5_ROUND2(a, b, c, d, x[ 5], 5, 0xd62f105d); MD5_ROUND2(d, a, b, c, x[10], 9, 0x2441453); MD5_ROUND2(c, d, a, b, x[15], 14, 0xd8a1e681); MD5_ROUND2(b, c, d, a, x[ 4], 20, 0xe7d3fbc8); MD5_ROUND2(a, b, c, d, x[ 9], 5, 0x21e1cde6); MD5_ROUND2(d, a, b, c, x[14], 9, 0xc33707d6); MD5_ROUND2(c, d, a, b, x[ 3], 14, 0xf4d50d87); MD5_ROUND2(b, c, d, a, x[ 8], 20, 0x455a14ed); MD5_ROUND2(a, b, c, d, x[13], 5, 0xa9e3e905); MD5_ROUND2(d, a, b, c, x[ 2], 9, 0xfcefa3f8); MD5_ROUND2(c, d, a, b, x[ 7], 14, 0x676f02d9); MD5_ROUND2(b, c, d, a, x[12], 20, 0x8d2a4c8a);
MD5_ROUND3(a, b, c, d, x[ 5], 4, 0xfffa3942); MD5_ROUND3(d, a, b, c, x[ 8], 11, 0x8771f681); MD5_ROUND3(c, d, a, b, x[11], 16, 0x6d9d6122); MD5_ROUND3(b, c, d, a, x[14], 23, 0xfde5380c); MD5_ROUND3(a, b, c, d, x[ 1], 4, 0xa4beea44); MD5_ROUND3(d, a, b, c, x[ 4], 11, 0x4bdecfa9); MD5_ROUND3(c, d, a, b, x[ 7], 16, 0xf6bb4b60); MD5_ROUND3(b, c, d, a, x[10], 23, 0xbebfbc70); MD5_ROUND3(a, b, c, d, x[13], 4, 0x289b7ec6); MD5_ROUND3(d, a, b, c, x[ 0], 11, 0xeaa127fa); MD5_ROUND3(c, d, a, b, x[ 3], 16, 0xd4ef3085); MD5_ROUND3(b, c, d, a, x[ 6], 23, 0x4881d05); MD5_ROUND3(a, b, c, d, x[ 9], 4, 0xd9d4d039); MD5_ROUND3(d, a, b, c, x[12], 11, 0xe6db99e5); MD5_ROUND3(c, d, a, b, x[15], 16, 0x1fa27cf8); MD5_ROUND3(b, c, d, a, x[ 2], 23, 0xc4ac5665);
MD5_ROUND4(a, b, c, d, x[ 0], 6, 0xf4292244); MD5_ROUND4(d, a, b, c, x[ 7], 10, 0x432aff97); MD5_ROUND4(c, d, a, b, x[14], 15, 0xab9423a7); MD5_ROUND4(b, c, d, a, x[ 5], 21, 0xfc93a039); MD5_ROUND4(a, b, c, d, x[12], 6, 0x655b59c3); MD5_ROUND4(d, a, b, c, x[ 3], 10, 0x8f0ccc92); MD5_ROUND4(c, d, a, b, x[10], 15, 0xffeff47d); MD5_ROUND4(b, c, d, a, x[ 1], 21, 0x85845dd1); MD5_ROUND4(a, b, c, d, x[ 8], 6, 0x6fa87e4f); MD5_ROUND4(d, a, b, c, x[15], 10, 0xfe2ce6e0); MD5_ROUND4(c, d, a, b, x[ 6], 15, 0xa3014314); MD5_ROUND4(b, c, d, a, x[13], 21, 0x4e0811a1); MD5_ROUND4(a, b, c, d, x[ 4], 6, 0xf7537e82); MD5_ROUND4(d, a, b, c, x[11], 10, 0xbd3af235); MD5_ROUND4(c, d, a, b, x[ 2], 15, 0x2ad7d2bb); MD5_ROUND4(b, c, d, a, x[ 9], 21, 0xeb86d391);
state[0] += a; state[1] += b; state[2] += c; state[3] += d; }
/*! @brief 内部函数,处理数据的前面部分(>64字节的部分),每次组成一个64字节的block就进行杂凑处理 @param[out] ctx 算法的context,用于记录一些处理的上下文和结果 @param[in] buf 处理的数据, @param[in] size 处理的数据长度 */ static void zen_md5_update(md5_ctx *ctx, const unsigned char *buf, size_t size) { //为什么不是=,因为在某些环境下,可以多次调用zen_md5_update,但这种情况,必须保证前面的调用,每次都没有unprocessed_ ctx->length_ += size;
//每个处理的块都是64字节 while (size >= ZEN_MD5_BLOCK_SIZE) { zen_md5_process_block(ctx->hash_, reinterpret_cast<const uint32_t *>(buf)); buf += ZEN_MD5_BLOCK_SIZE; size -= ZEN_MD5_BLOCK_SIZE; }
ctx->unprocessed_ = size; }
/*! @brief 内部函数,处理数据的末尾部分,我们要拼出最后1个(或者两个)要处理的BLOCK,加上0x80,加上长度进行处理 @param[in] ctx 算法的context,用于记录一些处理的上下文和结果 @param[in] buf 处理的数据 @param[in] size 处理buffer的长度 @param[out] result 返回的结果, */ static void zen_md5_final(md5_ctx *ctx, const unsigned char *buf, size_t size, unsigned char *result) { uint32_t message[ZEN_MD5_BLOCK_SIZE / 4];
//保存剩余的数据,我们要拼出最后1个(或者两个)要处理的块,前面的算法保证了,最后一个块肯定小于64个字节 if (ctx->unprocessed_) { memcpy(message, buf + size - ctx->unprocessed_, static_cast<size_t>( ctx->unprocessed_)); }
//得到0x80要添加在的位置(在uint32_t 数组中), uint32_t index = ((uint32_t)ctx->length_ & 63) >> 2; uint32_t shift = ((uint32_t)ctx->length_ & 3) * 8;
//添加0x80进去,并且把余下的空间补充0 message[index] &= ~(0xFFFFFFFF << shift); message[index++] ^= 0x80 << shift;
//如果这个block还无法处理,其后面的长度无法容纳长度64bit,那么先处理这个block if (index > 14) { while (index < 16) { message[index++] = 0; }
zen_md5_process_block(ctx->hash_, message); index = 0; }
//补0 while (index < 14) { message[index++] = 0; }
//保存长度,注意是bit位的长度,这个问题让我看着郁闷了半天, uint64_t data_len = (ctx->length_) << 3;
//注意MD5算法要求的64bit的长度是小头LITTLE-ENDIAN编码,注意下面的比较是!= #if ZEN_BYTES_ORDER != ZEN_LITTLE_ENDIAN data_len = ZEN_SWAP_UINT64(data_len); #endif
message[14] = (uint32_t) (data_len & 0x00000000FFFFFFFF); message[15] = (uint32_t) ((data_len & 0xFFFFFFFF00000000ULL) >> 32);
zen_md5_process_block(ctx->hash_, message);
//注意结果是小头党的,在大头的世界要进行转换 #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN memcpy(result, &ctx->hash_, ZEN_MD5_HASH_SIZE); #else swap_uint32_memcpy(result, &ctx->hash_, ZEN_MD5_HASH_SIZE); #endif
}
//计算一个内存数据的MD5值 unsigned char *ZEN_LIB::md5(const unsigned char *buf, size_t size, unsigned char result[ZEN_MD5_HASH_SIZE]) { assert(result != NULL);
md5_ctx ctx; zen_md5_init(&ctx); zen_md5_update(&ctx, buf, size); zen_md5_final(&ctx, buf, size, result); return result; }
//================================================================================================ //SHA1的算法
//每次处理的BLOCK的大小 static const size_t ZEN_SHA1_BLOCK_SIZE = 64;
//SHA1算法的上下文,保存一些状态,中间数据,结果 typedef struct sha1_ctx {
//处理的数据的长度 uint64_t length_; //还没有处理的数据长度 uint64_t unprocessed_; /* 160-bit algorithm internal hashing state */ uint32_t hash_[5]; } sha1_ctx;
//内部函数,SHA1算法的上下文的初始化 static void zen_sha1_init(sha1_ctx *ctx) { ctx->length_ = 0; ctx->unprocessed_ = 0; // 初始化算法的几个常量,魔术数 ctx->hash_[0] = 0x67452301; ctx->hash_[1] = 0xefcdab89; ctx->hash_[2] = 0x98badcfe; ctx->hash_[3] = 0x10325476; ctx->hash_[4] = 0xc3d2e1f0; }
/*! @brief 内部函数,对一个64bit内存块进行摘要(杂凑)处理, @param hash 存放计算hash结果的的数组 @param block 要计算的处理得内存块 */ static void zen_sha1_process_block(uint32_t hash[5], const uint32_t block[ZEN_SHA1_BLOCK_SIZE / 4]) { size_t t; uint32_t wblock[80]; register uint32_t a, b, c, d, e, temp;
//SHA1算法处理的内部数据要求是大头党的,在小头的环境转换 #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN swap_uint32_memcpy(wblock, block, ZEN_SHA1_BLOCK_SIZE); #else ::memcpy(wblock, block, ZEN_SHA1_BLOCK_SIZE); #endif for (t = 0; t < 80; t++) { printf("%u\n", wblock[t]); } //处理 for (t = 16; t < 80; t++) { wblock[t] = ROTL32(wblock[t - 3] ^ wblock[t - 8] ^ wblock[t - 14] ^ wblock[t - 16], 1); }
a = hash[0]; b = hash[1]; c = hash[2]; d = hash[3]; e = hash[4];
for (t = 0; t < 20; t++) { /* the following is faster than ((B & C) | ((~B) & D)) */ temp = ROTL32(a, 5) + (((c ^ d) & b) ^ d) + e + wblock[t] + 0x5A827999; e = d; d = c; c = ROTL32(b, 30); b = a; a = temp; } // printf("%u\n", a); // printf("%u\n", b); // printf("%u\n", c); // printf("%u\n", d); // printf("%u\n", e); for (t = 20; t < 40; t++) { temp = ROTL32(a, 5) + (b ^ c ^ d) + e + wblock[t] + 0x6ED9EBA1; e = d; d = c; c = ROTL32(b, 30); b = a; a = temp; }
for (t = 40; t < 60; t++) { temp = ROTL32(a, 5) + ((b & c) | (b & d) | (c & d)) + e + wblock[t] + 0x8F1BBCDC; e = d; d = c; c = ROTL32(b, 30); b = a; a = temp; }
for (t = 60; t < 80; t++) { temp = ROTL32(a, 5) + (b ^ c ^ d) + e + wblock[t] + 0xCA62C1D6; e = d; d = c; c = ROTL32(b, 30); b = a; a = temp; }
hash[0] += a; hash[1] += b; hash[2] += c; hash[3] += d; hash[4] += e; }
/*! @brief 内部函数,处理数据的前面部分(>64字节的部分),每次组成一个64字节的block就进行杂凑处理 @param ctx 算法的上下文,记录中间数据,结果等 @param msg 要进行计算的数据buffer @param size 长度 */ static void zen_sha1_update(sha1_ctx *ctx, const unsigned char *buf, size_t size) { //为了让zen_sha1_update可以多次进入,长度可以累计 ctx->length_ += size;
//每个处理的块都是64字节 while (size >= ZEN_SHA1_BLOCK_SIZE) { zen_sha1_process_block(ctx->hash_, reinterpret_cast<const uint32_t *>(buf)); buf += ZEN_SHA1_BLOCK_SIZE; size -= ZEN_SHA1_BLOCK_SIZE; }
ctx->unprocessed_ = size; }
/*! @brief 内部函数,处理数据的最后部分,添加0x80,补0,增加长度信息 @param ctx 算法的上下文,记录中间数据,结果等 @param msg 要进行计算的数据buffer @param result 返回的结果 */ static void zen_sha1_final(sha1_ctx *ctx, const unsigned char *msg, size_t size, unsigned char *result) {
uint32_t message[ZEN_SHA1_BLOCK_SIZE / 4];
//保存剩余的数据,我们要拼出最后1个(或者两个)要处理的块,前面的算法保证了,最后一个块肯定小于64个字节 if (ctx->unprocessed_) { memcpy(message, msg + size - ctx->unprocessed_, static_cast<size_t>( ctx->unprocessed_)); }
//得到0x80要添加在的位置(在uint32_t 数组中), uint32_t index = ((uint32_t)ctx->length_ & 63) >> 2; uint32_t shift = ((uint32_t)ctx->length_ & 3) * 8;
//添加0x80进去,并且把余下的空间补充0 message[index] &= ~(0xFFFFFFFF << shift); message[index++] ^= 0x80 << shift;
//如果这个block还无法处理,其后面的长度无法容纳长度64bit,那么先处理这个block if (index > 14) { while (index < 16) { message[index++] = 0; }
zen_sha1_process_block(ctx->hash_, message); index = 0; }
//补0 while (index < 14) { message[index++] = 0; }
//保存长度,注意是bit位的长度,这个问题让我看着郁闷了半天, uint64_t data_len = (ctx->length_) << 3;
//注意SHA1算法要求的64bit的长度是大头BIG-ENDIAN,在小头的世界要进行转换 #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN data_len = ZEN_SWAP_UINT64(data_len); #endif
message[14] = (uint32_t) (data_len & 0x00000000FFFFFFFF); message[15] = (uint32_t) ((data_len & 0xFFFFFFFF00000000ULL) >> 32);
zen_sha1_process_block(ctx->hash_, message);
//注意结果是大头党的,在小头的世界要进行转换 #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN swap_uint32_memcpy(result, &ctx->hash_, ZEN_SHA1_HASH_SIZE); #else memcpy(result, &ctx->hash_, ZEN_SHA1_HASH_SIZE); #endif }
//计算一个内存数据的SHA1值 unsigned char *ZEN_LIB::sha1(const unsigned char *msg, size_t size, unsigned char result[ZEN_SHA1_HASH_SIZE]) { assert(result != NULL);
sha1_ctx ctx; zen_sha1_init(&ctx); zen_sha1_update(&ctx, msg, size); zen_sha1_final(&ctx, msg, size, result); return result; }
int main(int /*argc*/, char * /*argv*/[]) {
int ret = 0; static unsigned char test_buf[7][81] = { { "" }, { "a" }, { "abc" }, { "message digest" }, { "abcdefghijklmnopqrstuvwxyz" }, { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" }, { "12345678901234567890123456789012345678901234567890123456789012345678901234567890" } };
static const size_t test_buflen[7] = { 0, 1, 3, 14, 26, 62, 80 };
// static const unsigned char md5_test_sum[7][16] = // { // { 0xD4, 0x1D, 0x8C, 0xD9, 0x8F, 0x00, 0xB2, 0x04, 0xE9, 0x80, 0x09, 0x98, 0xEC, 0xF8, 0x42, 0x7E }, // { 0x0C, 0xC1, 0x75, 0xB9, 0xC0, 0xF1, 0xB6, 0xA8, 0x31, 0xC3, 0x99, 0xE2, 0x69, 0x77, 0x26, 0x61 }, // { 0x90, 0x01, 0x50, 0x98, 0x3C, 0xD2, 0x4F, 0xB0, 0xD6, 0x96, 0x3F, 0x7D, 0x28, 0xE1, 0x7F, 0x72 }, // { 0xF9, 0x6B, 0x69, 0x7D, 0x7C, 0xB7, 0x93, 0x8D, 0x52, 0x5A, 0x2F, 0x31, 0xAA, 0xF1, 0x61, 0xD0 }, // { 0xC3, 0xFC, 0xD3, 0xD7, 0x61, 0x92, 0xE4, 0x00, 0x7D, 0xFB, 0x49, 0x6C, 0xCA, 0x67, 0xE1, 0x3B }, // { 0xD1, 0x74, 0xAB, 0x98, 0xD2, 0x77, 0xD9, 0xF5, 0xA5, 0x61, 0x1C, 0x2C, 0x9F, 0x41, 0x9D, 0x9F }, // { 0x57, 0xED, 0xF4, 0xA2, 0x2B, 0xE3, 0xC9, 0x55, 0xAC, 0x49, 0xDA, 0x2E, 0x21, 0x07, 0xB6, 0x7A } // }; unsigned char result[32] ={0};
// for(size_t i=0;i<7;++i) // { // ZEN_LIB::md5(test_buf[i],test_buflen[i],result); // ret = memcmp(result,md5_test_sum[i],16); // if (ret != 0) // { // assert(false); // } // }
static const unsigned char sha1_test_sum[7][20] = { { 0xda,0x39,0xa3,0xee,0x5e,0x6b,0x4b,0x0d,0x32,0x55,0xbf,0xef,0x95,0x60,0x18,0x90,0xaf,0xd8,0x07,0x09 }, { 0x86,0xf7,0xe4,0x37,0xfa,0xa5,0xa7,0xfc,0xe1,0x5d,0x1d,0xdc,0xb9,0xea,0xea,0xea,0x37,0x76,0x67,0xb8 }, { 0xa9,0x99,0x3e,0x36,0x47,0x06,0x81,0x6a,0xba,0x3e,0x25,0x71,0x78,0x50,0xc2,0x6c,0x9c,0xd0,0xd8,0x9d }, { 0xc1,0x22,0x52,0xce,0xda,0x8b,0xe8,0x99,0x4d,0x5f,0xa0,0x29,0x0a,0x47,0x23,0x1c,0x1d,0x16,0xaa,0xe3 }, { 0x32,0xd1,0x0c,0x7b,0x8c,0xf9,0x65,0x70,0xca,0x04,0xce,0x37,0xf2,0xa1,0x9d,0x84,0x24,0x0d,0x3a,0x89 }, { 0x76,0x1c,0x45,0x7b,0xf7,0x3b,0x14,0xd2,0x7e,0x9e,0x92,0x65,0xc4,0x6f,0x4b,0x4d,0xda,0x11,0xf9,0x40 }, { 0x50,0xab,0xf5,0x70,0x6a,0x15,0x09,0x90,0xa0,0x8b,0x2c,0x5e,0xa4,0x0f,0xa0,0xe5,0x85,0x55,0x47,0x32 }, };
ZEN_LIB::sha1(test_buf[0],test_buflen[0],result); // for (int i=0; i < 20; i++) // printf("0x%02x\n", result[i]); return 0; }
|